56 research outputs found

    Radiative DD^* Decay Using Heavy Quark and Chiral Symmetry

    Full text link
    The implications of chiral SU(3)L×SU(3)RSU(3)_L \times SU(3)_R symmetry and heavy quark symmetry for the radiative decays D0D0γD^{*0}\to D^0\gamma, D+D+γD^{*+}\to D^+\gamma, and DsDsγD_s^*\to D_s\gamma are discussed. Particular attention is paid to SU(3)SU(3) violating contributions of order mq1/2m_q^{1/2}. Experimental data on these radiative decays provide constraints on the DDπD^* D\pi coupling.Comment: 9 pages plus 3 pages of figures in POSTSCRIPT file appended to TeX file (uses harvmac.tex and tables.tex), UCSD/PTH 92-31, CALT-68-1816, EFI-92-45, CERN-TH.6650/9

    Meson Decay Constants from Isospin Mass Splittings in the Quark Model

    Full text link
    Decay constants of DD and BB mesons are estimated within the framework of a heavy-quark approach using measured isospin mass splittings in the DD, DD^*, and BB states to isolate the electromagnetic hyperfine interaction between quarks. The values fD=(262±29)f_D = (262 \pm 29) MeV and fB=(160±17)f_B = (160 \pm 17) MeV are obtained. Only experimental errors are given; possible theoretical ambiguities, and suggestions for reducing them, are noted.Comment: 7 pages, LaTeX, EFI-92-3

    Heavy Quark Symmetry Violation in Semileptonic Decays of D Mesons

    Full text link
    The decays of DD mesons to KlνK l \nu and KlνK^* l \nu final states exhibit significant deviations from the predictions of heavy-quark symmetry, as one might expect since the strange quark's mass is of the same order as the QCD scale. Nonetheless, in order to understand where the most significant effects might lie for heavier systems (such as BDlνB \to D l\nu and BDlνB \to D^* l\nu), the pattern of these deviations is analyzed from the standpoint of perturbative QCD and O(1/ms){\cal O}(1/m_s) corrections. Two main effects are noted. First, the perturbative QCD corrections lead to an overall decrease of predicted rates, which can be understood in terms of production of excited kaonic states. Second, O(1/ms){\cal O}(1/m_s) effects tend to cancel the perturbative QCD corrections in the case of KlνKl\nu decay, while they have minimal effect in KlνK^*l\nu decay.Comment: 25 pages (LaTeX) + 7 pages of Postscript figures (included at end), EFI-92-3

    Measurement of J/Psi and Psi(2S) Polarization in ppbar Collisions at sqrt(s) = 1.8 TeV

    Get PDF
    We have measured the polarization of J/Psi and Psi(2S) mesons produced in p\bar{p} collisions at \sqrt{s} = 1.8 TeV, using data collected at CDF during 1992-95. The polarization of promptly produced J/Psi [Psi(2S)] mesons is isolated from those produced in B-hadron decay, and measured over the kinematic range 4[5.5] < P_T < 20 GeV/c and |y| < 0.6. For P_T \gessim 12 GeV/c we do not observe significant polarization in the prompt component.Comment: Revised version, accepted for publication in Physical Review Letter

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    This work was supported by The Department of the Interior Alaska Climate Adaptation Science Center, which is managed by the USGS National Climate Adaptation Science Center.

    Get PDF
    53 pages : color illustrations, color maps ; 28 cmThis report is designed as a living document to inform the community, decision makers, and academics and to serve as a learning and teaching tool. The nine key messages summarized on pages 6 and 7 are intended for use as a quick reference. Unique for this type of report, these key messages highlight actions by Juneau's civil society, including local nonprofit organizations.We thank the City and Borough of Juneau (CBJ) for its support in bringing this vital information on climate change to the Juneau community and to others. Thanks especially to all the co-authors and other contributors. The inclusion of such a diverse array of material, including local knowledge, was made possible by the many elders, scientists, and local experts who contributed their time and expertise. The report is online at acrc.alaska.edu/ juneau-climate-report. It is an honor to be the lead editor and project manager for this critical effort. We have a chance to save our world from the most extreme effects of climate change. Let us take it. Gunalchéesh, sincerely, James E. Powell (Jim), PhD, Alaska Coastal Rainforest Center, UASWelcome / Thomas F. Thornton -- Juneau's climate report: History and background / Bruce Botelho -- Using this report -- Acknowledgements / James E. Powell -- A regional Indigenous perspective on adaptation: The Central Council of Tlingit & Haida Indian Tribes of Alaska's Climate Change Adaptation Plan / Raymond Paddock -- Nine key messages -- What we're experiencing: Atmospheric, marine, terrestrial, and ecological effects. Climate. Setting and seasons / Tom Ainsworth -- More precipitation / Rick Thoman -- Higher temperatures / Rich Thoman -- Less snowfall / Eran Hood -- Ocean. Surface uplift and sea level rise / Eran Hood -- Extensive effects of a warming ocean / Heidi Pearson -- Increasing ocean acidification / Robert Foy -- Land. More landslides / Sonia Nagorski & Aaron Jacobs -- Mendenhall Glacier continues to retreat / Jason Amundson -- Tongass Forest impacts and carbon / Dave D'Amore -- Animals. Terrestrial vertebrates in A¿¿ak'w & T'aak¿łu Aani¿¿ / Richard Carstensen -- Three animals as indicators of change / Richard Carstensen -- Insects / Bob Armstrong -- What we're doing: Community response. Upgrading ifrastructure and mitigation / Katie Koester -- Upgrading utilities and other energy consumers / Alec Mesdag -- Growing demand for hydropower / Duff Mitchell -- Leading a shift in transportation / Duff Mitchell -- Maintaining mental health through community and recreation / Linda Kruger & Kevin Maier -- Food security / Darren Snyder & Jim Powell -- Large cruise ship air emissions / Jim Powell -- Tourists' views on climate change mitigation / Jim Powell -- Lowering greenhouse gas emissions / Jim Powell & Peggy Wilcox -- Residents taking action / Andy Romanoff & Jim Powell -- Summary and Recommendations -- References -- Graphics and data sources -- Appendix: Juneau nonprofit climate change organization

    Extensive retreat of Greenland tidewater glaciers 2000-2010

    Get PDF
    Overall mass loss from the Greenland ice sheet nearly doubled during the early 2000s resulting in an increased contribution to sea-level rise, with this step-change being mainly attributed to the widespread frontal retreat and accompanying dynamic thinning of tidewater glaciers. Changes in glacier calving-front positions are easily derived from remotely sensed imagery and provide a record of dynamic change. However, ice-sheet-wide studies of calving fronts have been either spatially or temporally limited. In this study multiple calving-front positions were derived for 199 Greenland marine-terminating outlet glaciers with width greater than 1 km using Landsat imagery for the 11-year period 2000–2010 in order to identify regional seasonal and inter-annual variations. During this period, outlet glaciers were characterized by sustained and substantial retreat summing to more than 267 km, with only 11 glaciers showing overall advance. In general, the pattern of mass loss detected by GRACE (Gravity Recovery and Climate Experiment) and other measurements is reflected in the calving record of Greenland glaciers. Our results suggest several regions in the south and east of the ice sheet likely share controls on their dynamic changes, but no simple single control is apparent
    corecore